

Photometry and Albedo Maps of Pluto and Charon

Buratti B. J.¹, Hofgartner J.¹, Hillier J. H.², Hicks M. D.¹, Verbiscer A. J.³, Stern S. A.⁴, Weaver H. A.⁵, Howett C. J. A.⁴, Young L. A.⁴, Cheng A.⁵, Ennico K.⁶, Olkin C. B.⁴

Pluto System after New Horizons
Applied Physics Laboratory, Laurel, MD

July 14-19, 2019

¹Jet Propulsion laboratory, California Institute of Technology

²Grays Harbor College

³University of Virginia

⁴Southwest Research Institute, Boulder

⁵Applied Physics Laboratory, Johns Hopkins University

⁶NASA Ames

Summary of Talk

- Albedo maps: key data set; complements compositional maps, geologic maps, crater counts, and overall view of geologic and exogenic processes
- Photometry: yields clues to the nature of surface: roughness; "fluffiness" or compaction of surface; particle size
- (Pluto only): nature of atmosphere and hazes, through radiative transfer modeling

Pluto normal reflectance: extraordinary albedo variegations

Hints of very high albedo from Earth-based observations:

- Marcialis, 1988 AJ (the "two spot model"; "polar caps with albedos near unity")
- Stern et al., 1988 *Icarus* "Why is Pluto bright?"
- Young, E. et al. 1999 AJ "This [mutual event] map resolves a localized bright feature that may be due to condensation around a geyser or in a crater."

New Horizons established a connection between unit albedo and activity

New Horizons map of normal reflectance Buratti et al., 2017.

lapetus

Pluto

Pluto: a comparison with other icy bodies

Object	Maximum	Minimum	Source
Pluto	0.95	0.08	This study
lapetus	0.70	0.02	Buratti et al. 1990
Europa	0.85	0.55 (?)	Buratti&Golombek 1988
Triton	0.90	0.62	McEwen, 1990
Enceladus	1.02	0.96	Buratti et al. 1990*

Pluto shows variations as extreme as those of Iapetus, Saturnian moon Pluto's bright active region is almost as bright as Enceladus

^{*}Albedos at similar geometries were attempted; Verbiscer et al. (2007 report a much higher albedo at opposition).

Activity on Eris?

- High albedos near unity have been indicators of activity on planets and moons, such as as is the case for Enceladus (Buratti et al., 1984; Verbiscer et al., 2005, 2007). A possible liquid ocean on Pluto was based on models that computed heating from rock/radioactive isotope fractions. Density of Pluto is 1.9 gm/cc (Stern et al. 2015), and the near-unit albedo on Sputnik Planitia was discovered by New Horizons (Buratti et al., 2016).
- The density of Eris is even larger (2.5 gm/cc), and its geometric albedo is 1.0 (Sicardy et al., 2011). These results suggest Eris likely has current cryovolcanic activity on its surface
- Other explanations are possible, such as condensation of CH4 frost without the "tholins" that Pluto has, for example. There is strong evidence against this scenario.:
- 1. The extraordinarily high albedo of Eris and the fact that a small amount of contaminants lowers albedo drastically (Clark et al. 1981)
- 2. Dust in the Kuiper Belt (Stark, 2011); also may be present on *New Horizons* images
- 3. The likely presence of hydrocarbons (Simonelli et al., 1989) *ab initio* in Pluto's formation also provides contaminants to the surfaces of KBOs.

Charon normal reflectance: "normal"

The single scattering albedo and single particle phase function

- The single scattering albedo is the probability a photon will be scattered in any direction after one scattering.
- Single particle phase function gives the specific directional properties and depends on the of the size, shape, and composition of particle
- It is important to obtain observations at large solar phase angles to understand the forward scattering properties of bodies.
- For icy bodies, the solar phase angles observed from Earth are always small; need spacecraft images to determine this parameter.

The direction of a photon after a single scattering. An empirical parameter, the Henyey-Greenstein g is often used.

A crater roughness model

The effects of roughness are most pronounced at large solar phase angles, but disk-resolved data from spacecraft produce the most unambiguous fits.

Rocky and icy bodies both exhibit two types of surges

The Moon

Dione: a typical icy moon

The "supersurge" at very small phase angles is believed to be due to coherent backscatter (Hapke, 1990;1998; 2002). Focus on shadow-hiding......

Charon's solar phase curve

Charon: A comparison

		я	P		
ч	۰	_	L	d	á
п	۲	_	г	٦	J
		+			

Object	w	g	Slope angle θ(°)	h (s)*	h (c)*	B _o (s)*	B ₀ (c)*	Source
Charon	0.72	-0.09	23	0.150	0.037	0.001	0.536	This study
Nix	0.86	0.49	20**	0.50	0.019	0.94	0.87	Verbiscer et al., 2018
Hydra	0.95	0.44	20**	0.16	0.0043	0.88	0.45	Verbiscer et al., 2018
Rhea	0.861 0.989	-0.29 0.2	13±5 33	0.08 0.0004		1.37 1.8		Verbiscer and Veverka, 1989 Ciarnello et al., 2011
Europa	0.964	-0.15± 0.04	10	0.0016		0.5		Buratti, 1985; Domingue et al., 1991
C-asteroids	0.037	-0.47	20**	0.025		1.03	100	Helfenstein and Veverka 1989
S-asteroids	0.23	-0.27	20**	0.08		1.60	100	Helfenstein and Veverka 1989
Moon	0.25	-0.25	20	0.05		1.0	8	Buratti 1985; Hillier et al. 1999
Vesta	0.49	-0.23	8	0.076		1.66	Si	Li et al. 2013

^{*}Hapke's later models have separate parameters for the shadow-hiding and coherent backscatter portions of the opposition surge.

^{**}Assumed

Pluto 165°

Triton 155°

Titan

A radiative transfer model for a plane-parallel atmosphere Hillier et al. (1990, 1991) Triton Buratti et al. (2011) Triton Voyager and Ground-based Based on Chandrasekhar (1960) "The Planetary Problem"

Example of model for Triton

Voyager Green and V filter combined to give ϖ = 0.998; g= -0.32; [θ =14°], (h,B_o = 0.0065; 0.2167; p, q, and A_B also derived.

For the haze, the optical depth $\tau = 0.03$ and the g=0.6 (Buratti et al, 2011).

Ongoing modeling for Pluto

Table – Comparison of surface single scattering albedo (ω) and phase function (Henyey-Greenstein g) for the surface and haze; the surface roughness (mean slope angle θ) of surface and optical depth of haze for Titan, Pluto, and Triton

Object	Wave- length	Surface			Haze	Ref.		
		$\boldsymbol{\varpi}$	θ (°)	g	τ	页	g	
Triton	0.41	0.99±0.02	10±0.2	-0.2±0.1	0.06±0.0 1	0.99±0.02	0.6±0.1	1
	0.47	0.99±0.02	11±0.3	-0.24±0.04	0.06±0.1	0.99±0.02	0.6±0.1	1
	0.56	0.995±0.02	11.5±0.2	-0.23±0.04	0.04±0 0 1	0.99±0.02	0.6±0.1	1
Titan	0.47		15-30 ¹			0.87		2, 3
	0.56					0.93	0.3±0.1 ²	2
	0.61				1.4	0.94	0.3±0.1 ²	2
	0.65				1.2	0.95		
	0.81				1.0	0.97		
	0.89	TBD	TBD	TBD	TBD	0.97	0.4±0.1 ²	2
Pluto	0.50	0.97	(25)	0.04	0.007	0.89	0.82	
	0.61	0.99	(25)			/\		
	0.65	0.99	(25)	-0.006	0.003	0.94	0.86	
	0.81	0.99	(25)		\			(1) Hillier et al., 199 (2) Tomasko and W
	0.89	0.99	(25)	-0.05	0.002	0.96		(3) Buratti et al., 20

Spectra of haze (composition)

Tomasko and West, 2009; Hillier et al., 1991 Pluto's haze is organics (Gladstone et al., 2016); spectra not yet determined

Comparison of forward-scattering

New Horizons did not do all things

Summary

- Extraordinarily high albedo variegations on Pluto, ranging from 0.08 to ~1. Unit albedo solidifies the connection between very bright surfaces and geologic activity. Charon albedo distribution is more "normal".
- Photometric model of Charon shows it is much like other water-icy and rocky bodies. It does not appear to be very strongly backscattering.
- Pluto modeling is challenging, but preliminary work shows its haze is reddish like Titan's and unlike Triton's. Surface like
- Both bodies have huge opposition surges (ground-based result)